organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Torsten Winkler,^a† Rainer Herges,^a† Peter G. Jones^b* and Ina Dix^a‡

^aInstitut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

+ Current address: Institut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24098 Kiel, Germany

‡ Current address: Bruker AXS GmbH, PO Box, 76181 Karlsruhe, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study T = 143 K Mean σ (C–C) = 0.002 Å R factor = 0.038 wR factor = 0.105 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A tetrakis(secondary amide) derivative of quadricyclane: 3-isopropylidenetetracyclo-[3.2.0.0^{2,7}.0^{4,6}]heptane-1,5,6,7-tetracarboxylic acid tetrakis(cyclohexylamide)

The molecule of the title compound, $C_{38}H_{56}N_4O_4$, displays approximate twofold symmetry. The four amide groups are arranged such that four intramolecular $N-H\cdots O$ hydrogen bonds are formed. The molecules are linked into dimers by bifurcated $(C-H)_2\cdots O$ interactions. Received 16 June 2003 Accepted 18 June 2003 Online 10 July 2003

Comment

The present structure determination forms part of a short series of structures of norbornadiene and quadricyclane tetraamides. Introductory material was presented in the first paper (Winkler *et al.*, 2003*a*). We present here the structure of the title compound, (I), a tetrakis(secondary amide) derivative of quadricyclane.

The molecule of (I) (Fig. 1) possesses approximate twofold symmetry, but the orientations of the cyclohexyl rings depart appreciably from the ideal symmetry. Molecular dimensions, including those of the strained quadricyclane system (Table 1), may be considered normal. The four amide groups are arranged, as in the tetrakis(isopropyl) analogue (Winkler *et al.*, 2003*b*), such that four intramolecular hydrogen bonds (Table 2) of the N-H···O type are formed.

The molecules are connected to form inversion-symmetric dimers by a bifurcated intermolecular hydrogen-bond system $(C-H)_2 \cdots O3$, involving a methine and a methyl H atom, of graph-set $R_2^1(7)$. The dimers are linked into chains parallel to the *a* axis by a further $C-H \cdots O$ interaction from a cyclohexyl H atom (Table 2).

Experimental

The title compound was prepared according to the method of Winkler (2002) and recrystallized by evaporation from a dichloromethane/methanol solution.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $\begin{array}{l} C_{38}H_{56}N_4O_4\\ M_r = 632.87\\ \text{Triclinic, } P\overline{1}\\ a = 10.1995\ (14)\ \text{\AA}\\ b = 11.6467\ (16)\ \text{\AA}\\ c = 15.206\ (2)\ \text{\AA}\\ \alpha = 87.126\ (3)^{\circ}\\ \beta = 77.132\ (3)^{\circ}\\ \gamma = 81.300\ (3)^{\circ}\\ V = 1740.5\ (4)\ \text{\AA}^3 \end{array}$

Data collection

Bruker SMART 1000 CCD diffractometer ω scans Absorption correction: none 15921 measured reflections 7098 independent reflections Z = 2

 $D_{\rm r} = 1.208 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 6008

Mo $K\alpha$ radiation

reflections

T = 143 (2) K

 $R_{\rm int} = 0.038$

 $\theta_{\rm max} = 26.4^{\circ}$

 $h = -12 \rightarrow 12$

 $k = -14 \rightarrow 14$

 $l = -19 \rightarrow 19$

Tablet, colourless

 $0.38 \times 0.33 \times 0.19 \text{ mm}$

5126 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0516P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.1495P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

 $\theta = 2-28^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.105$ S = 1.037098 reflections 433 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

8	1	, ,	
C1-C2	1.5259 (19)	C3-C8	1.3343 (19)
C1-C7	1.5543 (19)	C3-C4	1.4791 (19)
C1-C5	1.5572 (18)	C4-C5	1.5268 (18)
C2-C3	1.4788 (18)	C4-C6	1.5298 (18)
C2-C7	1.5175 (19)	C5-C6	1.5545 (19)
$C_{11} - C_{1} - C_{2}$	119.79 (11)	C4 - C5 - C6	59.53 (8)
C11-C1-C7	128.02 (11)	C18-C5-C1	128.07 (11)
C2-C1-C7	59.02 (9)	C4-C5-C1	103.73 (10)
C11-C1-C5	132.38 (11)	C6-C5-C1	90.21 (10)
C2-C1-C5	103.77 (10)	C25-C6-C4	118.91 (11)
C7-C1-C5	89.55 (10)	C25-C6-C7	132.13 (11)
C3-C2-C7	110.32 (11)	C4-C6-C7	103.97 (11)
C3-C2-C1	109.86 (11)	C25-C6-C5	129.19 (12)
C7-C2-C1	61.42 (9)	C4-C6-C5	59.33 (8)
C8-C3-C2	128.92 (12)	C7-C6-C5	89.78 (10)
C8-C3-C4	130.05 (12)	C32-C7-C2	120.34 (11)
C2-C3-C4	101.04 (11)	C32 - C7 - C6	128.80 (12)
C3-C4-C5	110.15 (11)	C2 - C7 - C6	103.83 (10)
C3-C4-C6	109.42 (11)	C32-C7-C1	132.80 (12)
C5-C4-C6	61.14 (9)	C2-C7-C1	59.56 (9)
C18-C5-C4	121.36 (11)	C6-C7-C1	90.45 (10)
C18-C5-C6	133.19 (12)		
C2-C1-C11-O1	38.25 (18)	C4-C6-C25-O3	42.36 (18)
C7-C1-C11-O1	-34.0(2)	C7-C6-C25-O3	-167.02(13)
C5-C1-C11-O1	-168.41(13)	C5-C6-C25-O3	-30.1(2)
C2-C1-C11-N1	-140.90(13)	C4-C6-C25-N3	-135.48 (13)
C7-C1-C11-N1	146.87 (13)	C7-C6-C25-N3	15.1 (2)
C5-C1-C11-N1	12.4 (2)	C5-C6-C25-N3	152.06 (13)
C4-C5-C18-O2	117.87 (14)	C2-C7-C32-O4	117.39 (15)
C6-C5-C18-O2	-166.16(13)	C6-C7-C32-O4	-28.3(2)
C1-C5-C18-O2	-28.3 (2)	C1-C7-C32-O4	-167.58 (13)
C4-C5-C18-N2	-58.95 (17)	C2-C7-C32-N4	-59.03 (17)
C6-C5-C18-N2	17.0 (2)	C6-C7-C32-N4	155.32 (13)
C1-C5-C18-N2	154.90 (13)	C1-C7-C32-N4	16.0 (2)

Figure 1

The molecule of the title compound in the crystal. Displacement ellipsoids are drawn at the 30% probability level. H-atom radii are arbitrary. Hydrogen bonds are indicated by dashed lines.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline & \\ N1-H01\cdots O2 \\ N2-H02\cdots O3 \\ N3-H03\cdots O4 \\ N4-H04\cdots O1 \\ C4-H4\cdots O3^{i} \\ C9-H9{\cal A}\cdots O3^{i} \end{array}$	0.900 (18) 0.895 (18) 0.927 (17) 0.953 (19) 1.00 0.98	1.824 (18) 1.907 (19) 1.804 (17) 1.81 (2) 2.39 2.50	2.7091 (15) 2.7841 (16) 2.7153 (15) 2.7490 (16) 3.3890 (16) 3.4717 (18)	167.4 (17) 166.2 (16) 167.2 (15) 166.5 (16) 174 170
$C14 - H14B \cdots O4^{ii}$	0.99	2.50	3.367 (2)	146

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, y - 1, z.

H atoms bonded to nitrogen were refined freely. Methyl H atoms were located in difference syntheses, idealized (C–H = 0.98 Å and H–C–H = 109.5°) and refined on the basis of rigid groups allowed to rotate but not to tip. Other H atoms were included using a riding model with fixed C–H bond lengths of 1.00 (methine) or 0.99 Å (methylene); $U_{\rm iso}$ (H) values were fixed at 1.2 times $U_{\rm eq}$ of the parent atom.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Bruker (1998). *SMART* (Version 5.0) and *SAINT* (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Winkler, T. (2002). PhD thesis, Technical University of Braunschweig, Germany.
- Winkler, T., Herges, R., Jones, P. G. & Dix, I. (2003a). Acta Cryst. E59, 0994–0996.
- Winkler, T., Herges, R., Jones, P. G. & Dix, I. (2003b). Acta Cryst. E59, 0997–0999.